skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chapman, Samantha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2026
  2. Free, publicly-accessible full text available November 1, 2026
  3. Abstract Mangroves are important ecosystems for coastal biodiversity, resilience and carbon dynamics that are being threatened globally by human pressures and the impacts of climate change. Yet, at several geographic range limits in tropical–temperate transition zones, mangrove ecosystems are expanding poleward in response to changing macroclimatic drivers. Mangroves near range limits often grow to smaller statures and form dynamic, patchy distributions with other coastal habitats, which are difficult to map using moderate‐resolution (30‐m) satellite imagery. As a result, many of these mangrove areas are missing in global distribution maps. To better map small, scrub mangroves, we tested Landsat (30‐m) and Sentinel (10‐m) against very high resolution (VHR) Planet (3‐m) and WorldView (1.8‐m) imagery and assessed the accuracy of machine learning classification approaches in discerning current (2022) mangrove and saltmarsh from other coastal habitats in a rapidly changing ecotone along the east coast of Florida, USA. Our aim is to (1) quantify the mappable differences in landscape composition and complexity, class dominance and spatial properties of mangrove and saltmarsh patches due to image resolution; and (2) to resolve mapping uncertainties in the region. We found that the ability of Landsat to map mangrove distributions at the leading range edge was hampered by the size and extent of mangrove stands being too small for detection (50% accuracy). WorldView was the most successful in discerning mangroves from other wetland habitats (84% accuracy), closely followed by Planet (82%) and Sentinel (81%). With WorldView, we detected 800 ha of mangroves within the Florida range‐limit study area, 35% more mangroves than were detected with Planet, 114% more than Sentinel and 537% more than Landsat. Higher‐resolution imagery helped reveal additional variability in landscape metrics quantifying diversity, spatial configuration and connectedness among mangrove and saltmarsh habitats at the landscape, class and patch scales. Overall, VHR satellite imagery improved our ability to map mangroves at range limits and can help supplement moderate‐resolution global distributions and outdated regional maps. 
    more » « less
  4. Free, publicly-accessible full text available July 1, 2026
  5. The existence of coastal ecosystems depends on their ability to gain sediment and keep pace with sea level rise. Similar to other coastal areas, Northeast Florida (United States) is experiencing rapid population growth, climate change, and shifting wetland communities. Rising seas and more severe storms, coupled with the intensification of human activities, can modify the biophysical environment, thereby increasing coastal exposure to storm-induced erosion and inundation. Using the Guana Tolomato Matanzas National Estuarine Research Reserve as a case study, we analyzed the distribution of coastal protection services–expressly, wave attenuation and sediment control–provided by estuarine habitats inside a dynamic Intracoastal waterway. We explored six coastal variables that contribute to coastal flooding and erosion–(a) relief, (b) geomorphology, (c) estuarine habitats, (d) wind exposure, (e) boat wake energy, and (f) storm surge potential–to assess physical exposure to coastal hazards. The highest levels of coastal exposure were found in the north and south sections of the Reserve (9% and 14%, respectively) compared to only 4% in the central, with exposure in the south driven by low wetland elevation, high surge potential, and shorelines composed of less stable sandy and muddy substrate. The most vulnerable areas of the central Reserve and main channel of the Intracoastal waterway were exposed to boat wakes from larger vessels frequently traveling at medium speeds (10–20 knots) and had shoreline segments oriented towards the prevailing winds (north-northeast). To guide management for the recently expanded Reserve into vulnerable areas near the City of Saint Augustine, we evaluated six sites of concern where the current distribution of estuarine habitats (mangroves, salt marshes, and oyster beds) likely play the greatest role in natural protection. Spatially explicit outputs also identified potential elevation maintenance strategies such as living shorelines, landform modification, and mangrove establishment for providing coastal risk-reduction and other ecosystem-service co-benefits. Salt marshes and mangroves in two sites of the central section (N-312 and S-312) were found to protect more than a one-quarter of their cross-shore length (27% and 73%, respectively) from transitioning to the highest exposure category. Proposed interventions for mangrove establishment and living shorelines could help maintain elevation in these sites of concern. This work sets the stage for additional research, education, and outreach about where mangroves, salt marshes, and oyster beds are most likely to reduce risk to wetland communities in the region. 
    more » « less
  6. null (Ed.)